Перевод: с английского на английский

с английского на английский

Machines at Home

  • 1 Hoover, William Henry

    [br]
    b. 1849 New Berlin (now North Canton), Ohio, USA
    d. 25 February 1932 North Canton, Ohio, USA
    [br]
    American founder of the Electric Suction Company, which manufactured and successfully marketed the first practical and portable suction vacuum cleaner.
    [br]
    Hoover was descended from a Swiss farming family called Hofer who emigrated from Basle and settled in Lancaster County, Pennsylvania, in the early eighteenth century. By 1832 the family had become tanners and lived near North Berlin in Ohio. In 1870 William Henry Hoover, who had studied at Mount Union College, bought the tannery with his brothers and soon expanded the business to make horse collars and saddlery. The firm expanded to become W.H.Hoover \& Co. In the early years of the first decade of the twentieth century, horses were beginning to be replaced by the internal combustion engine, so Hoover needed a new direction for his firm. This he found in the suction vacuum cleaner devised in 1907 by J.Murray Spangler, a cousin of Hoover's wife. The first successful cleaner of this type had been operating in England since 1901 (see Booth), but was not a portable model. Attracted by the development of the small electric motor, Spangler produced a vertical cleaner with such a motor that sucked the dust through the machine and blew it into a bag attached to the handle. Spangler applied for a patent for his invention on 14 September in the same year; it was granted for a carpet sweeper and cleaner on 2 June 1908, but Spangler was unable to market it himself and sold the rights to Hoover. The Model O machine, which ran on small wheels, was immediately manufactured and marketed. Hoover's model was the first electric, one-person-operated, domestic vacuum cleaner and was instantly successful, although the main expansion of the business was delayed for some time until the greater proportion of houses were wired for electricity. The Hoover slogan, "it beats as it sweeps as it cleans", came to be true in 1926 with the introduction of the Model 700, which was the first cleaner to offer triple-action cleaning, a process which beat, swept and sucked at the carpet. Further advances in the 1930s included the use of magnesium and the early plastics.
    [br]
    Further Reading
    G.Adamson, 1969, Machines at Home, Lutterworth Press.
    How it Works: The Universal Encyclopaedia of Machines, Paladin. D.Yarwood, 1981, The British Kitchen, Batsford, Ch. 6.
    DY

    Biographical history of technology > Hoover, William Henry

  • 2 Singer, Isaac Merritt

    [br]
    b. 27 October 1811 Pittstown, New York, USA
    d. 23 July 1875 Torquay, Devonshire, England
    [br]
    American inventor of a sewing machine, and pioneer of mass production.
    [br]
    The son of a millwright, Singer was employed as an unskilled labourer at the age of 12, but later gained wide experience as a travelling machinist. He also found employment as an actor. On 16 May 1839, while living at Lockport, Illinois, he obtained his first patent for a rock-drilling machine, but he soon squandered the money he made. Then in 1849, while at Pittsburgh, he secured a patent for a wood-and metal-carving machine that he had begun five years previously; however, a boiler explosion in the factory destroyed his machine and left him penniless.
    Near the end of 1850 Singer was engaged to redesign the Lerow \& Blodgett sewing machine at the Boston shop of Orson C.Phelps, where the machine was being repaired. He built an improved version in eleven days that was sufficiently different for him to patent on 12 August 1851. He formed a partnership with Phelps and G.B. Zieber and they began to market the invention. Singer soon purchased Phelps's interest, although Phelps continued to manufacture the machines. Then Edward Clark acquired a one-third interest and with Singer bought out Zieber. These two, with dark's flair for promotion and marketing, began to create a company which eventually would become the largest manufacturer of sewing machines exported worldwide, with subsidiary factories in England.
    However, first Singer had to defend his patent, which was challenged by an earlier Boston inventor, Elias Howe. Although after a long lawsuit Singer had to pay royalties, it was the Singer machine which eventually captured the market because it could do continuous stitching. In 1856 the Great Sewing Machine Combination, the first important pooling arrangement in American history, was formed to share the various patents so that machines could be built without infringements and manufacture could be expanded without fear of litigation. Singer contributed his monopoly on the needle-bar cam with his 1851 patent. He secured twenty additional patents, so that his original straight-needle vertical design for lock-stitching eventually included such refinements as a continuous wheel-feed, yielding presser-foot, and improved cam for moving the needle-bar. A new model, introduced in 1856, was the first to be intended solely for use in the home.
    Initially Phelps made all the machines for Singer. Then a works was established in New York where the parts were assembled by skilled workers through filing and fitting. Each machine was therefore a "one-off" but Singer machines were always advertised as the best on the market and sold at correspondingly high prices. Gradually, more specialized machine tools were acquired, but it was not until long after Singer had retired to Europe in 1863 that Clark made the change to mass production. Sales of machines numbered 810 in 1853 and 21,000 ten years later.
    [br]
    Bibliography
    12 August 1851, US patent no. 8,294 (sewing machine)
    Further Reading
    Biographies and obituaries have appeared in Appleton's Cyclopedia of America, Vol. V; Dictionary of American Biography, Vol XVII; New York Times 25 July 1875; Scientific American (1875) 33; and National Cyclopaedia of American Biography.
    D.A.Hounshell, 1984, From the American System to Mass Production 1800–1932. The
    Development of Manufacturing Technology in the United States, Baltimore (provides a thorough account of the development of the Singer sewing machine, the competition it faced from other manufacturers and production methods).
    RLH

    Biographical history of technology > Singer, Isaac Merritt

  • 3 Clark, Edward

    [br]
    fl. 1850s New York State, USA
    [br]
    American co-developer of mass-production techniques at the Singer sewing machine factory.
    [br]
    Born in upstate New York, where his father was a small manufacturer, Edward Clark attended college at Williams and graduated in 1831. He became a lawyer in New York City and from then on lived either in the city or on his rural estate near Cooperstown in upstate New York. After a series of share manipulations, Clark acquired a one-third interest in Isaac M. Singer's company. They soon bought out one of Singer's earlier partners, G.B.Zeiber, and in 1851, under the name of I.M.Singer \& Co., they set up a permanent sewing machine business with headquarters in New York.
    The success of their firm initially rested on marketing. Clark introduced door-to-door sales-people and hire-purchase for their sewing machines in 1856 ($50 cash down, or $100 with a cash payment of $5 and $3 a month thereafter). He also trained women to demonstrate to potential customers the capabilities of the Singer sewing machine. At first their sewing machines continued to be made in the traditional way, with the parts fitted together by skilled workers through hand filing and shaping so that the parts would fit only onto one machine. This resembled European practice rather than the American system of manufacture that had been pioneered in the armouries in that country. In 1856 Singer brought out their first machine intended exclusively for home use, and at the same time manufacturing capacity was improved. Through increased sales, a new factory was built in 1858–9 on Mott Street, New York, but it soon became inadequate to meet demand.
    In 1863 the Singer company was incorporated as the Singer Manufacturing Co. and began to modernize its production methods with special jigs and fixtures to help ensure uniformity. More and more specialized machinery was built for making the parts. By 1880 the factory, then at Elizabethport, New Jersey, was jammed with automatic and semi-automatic machine tools. In 1882 the factory was producing sewing machines with fully interchangeable parts that did not require hand fitting in assembly. Production rose from 810 machines in 1853 to half a million in 1880. A new family model was introduced in 1881. Clark had succeeded Singer, who died in 1875, as President of the company, but he retired in 1882 after he had seen through the change to mass production.
    [br]
    Further Reading
    National Cyclopaedia of American Biography.
    D.A.Hounshell, 1984, From the American System to Mass Production, 1800–1932. The Development of Manufacturing Technology in the United States, Baltimore (a thorough account of Clark's role in the development of Singer's factories).
    F.B.Jewell, 1975, Veteran Sewing Machines. A Collector's Guide, Newton Abbot.
    RLH

    Biographical history of technology > Clark, Edward

  • 4 Lister, Samuel Cunliffe, 1st Baron Masham

    SUBJECT AREA: Textiles
    [br]
    b. 1 January 1815 Calverly Hall, Bradford, England
    d. 2 February 1906 Swinton Park, near Bradford, England
    [br]
    English inventor of successful wool-combing and waste-silk spinning machines.
    [br]
    Lister was descended from one of the old Yorkshire families, the Cunliffe Listers of Manningham, and was the fourth son of his father Ellis. After attending a school on Clapham Common, Lister would not go to university; his family hoped he would enter the Church, but instead he started work with the Liverpool merchants Sands, Turner \& Co., who frequently sent him to America. In 1837 his father built for him and his brother a worsted mill at Manningham, where Samuel invented a swivel shuttle and a machine for making fringes on shawls. It was here that he first became aware of the unhealthy occupation of combing wool by hand. Four years later, after seeing the machine that G.E. Donisthorpe was trying to work out, he turned his attention to mechanizing wool-combing. Lister took Donisthorpe into partnership after paying him £12,000 for his patent, and developed the Lister-Cartwright "square nip" comber. Until this time, combing machines were little different from Cartwright's original, but Lister was able to improve on this with continuous operation and by 1843 was combing the first fine botany wool that had ever been combed by machinery. In the following year he received an order for fifty machines to comb all qualities of wool. Further combing patents were taken out with Donisthorpe in 1849, 1850, 1851 and 1852, the last two being in Lister's name only. One of the important features of these patents was the provision of a gripping device or "nip" which held the wool fibres at one end while the rest of the tuft was being combed. Lister was soon running nine combing mills. In the 1850s Lister had become involved in disputes with others who held combing patents, such as his associate Isaac Holden and the Frenchman Josué Heilmann. Lister bought up the Heilmann machine patents and afterwards other types until he obtained a complete monopoly of combing machines before the patents expired. His invention stimulated demand for wool by cheapening the product and gave a vital boost to the Australian wool trade. By 1856 he was at the head of a wool-combing business such as had never been seen before, with mills at Manningham, Bradford, Halifax, Keighley and other places in the West Riding, as well as abroad.
    His inventive genius also extended to other fields. In 1848 he patented automatic compressed air brakes for railways, and in 1853 alone he took out twelve patents for various textile machines. He then tried to spin waste silk and made a second commercial career, turning what was called "chassum" and hitherto regarded as refuse into beautiful velvets, silks, plush and other fine materials. Waste silk consisted of cocoon remnants from the reeling process, damaged cocoons and fibres rejected from other processes. There was also wild silk obtained from uncultivated worms. This is what Lister saw in a London warehouse as a mass of knotty, dirty, impure stuff, full of bits of stick and dead mulberry leaves, which he bought for a halfpenny a pound. He spent ten years trying to solve the problems, but after a loss of £250,000 and desertion by his partner his machine caught on in 1865 and brought Lister another fortune. Having failed to comb this waste silk, Lister turned his attention to the idea of "dressing" it and separating the qualities automatically. He patented a machine in 1877 that gave a graduated combing. To weave his new silk, he imported from Spain to Bradford, together with its inventor Jose Reixach, a velvet loom that was still giving trouble. It wove two fabrics face to face, but the problem lay in separating the layers so that the pile remained regular in length. Eventually Lister was inspired by watching a scissors grinder in the street to use small emery wheels to sharpen the cutters that divided the layers of fabric. Lister took out several patents for this loom in his own name in 1868 and 1869, while in 1871 he took out one jointly with Reixach. It is said that he spent £29,000 over an eleven-year period on this loom, but this was more than recouped from the sale of reasonably priced high-quality velvets and plushes once success was achieved. Manningham mills were greatly enlarged to accommodate this new manufacture.
    In later years Lister had an annual profit from his mills of £250,000, much of which was presented to Bradford city in gifts such as Lister Park, the original home of the Listers. He was connected with the Bradford Chamber of Commerce for many years and held the position of President of the Fair Trade League for some time. In 1887 he became High Sheriff of Yorkshire, and in 1891 he was made 1st Baron Masham. He was also Deputy Lieutenant in North and West Riding.
    [br]
    Principal Honours and Distinctions
    Created 1st Baron Masham 1891.
    Bibliography
    1849, with G.E.Donisthorpe, British patent no. 12,712. 1850, with G.E. Donisthorpe, British patent no. 13,009. 1851, British patent no. 13,532.
    1852, British patent no. 14,135.
    1877, British patent no. 3,600 (combing machine). 1868, British patent no. 470.
    1868, British patent no. 2,386.
    1868, British patent no. 2,429.
    1868, British patent no. 3,669.
    1868, British patent no. 1,549.
    1871, with J.Reixach, British patent no. 1,117. 1905, Lord Masham's Inventions (autobiography).
    Further Reading
    J.Hogg (ed.), c. 1888, Fortunes Made in Business, London (biography).
    W.English, 1969, The Textile Industry, London; and C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (both cover the technical details of Lister's invention).
    RLH

    Biographical history of technology > Lister, Samuel Cunliffe, 1st Baron Masham

  • 5 Thimmonier, Barthélémy

    [br]
    b. 1793 Saint-Etienne, France d. 1857
    [br]
    French inventor of the first sewing machine.
    [br]
    The sewing machine is probably the most universal and the most important machine in clothing manufacture, being used both industrially and domestically. It was also the first domestic consumer durable and was the first mass-produced machine to appear in the home. The first practical sewing machine was built during 1828 and 1829 by Barthélémy Thimmonier, a working tailor of Saint-Etienne in France. He came from a modest family and had never received any training as a mechanic, so his invention is all the more remarkable. He took out a patent in 1830 in his own name and that of Ferrand, a tutor of the Saint-Etienne School of Mines who had helped him financially. It was a chain-stitch machine made largely of wood and operated by a foot pedal with a large flywheel. The needle moved up and down through the cloth, which was placed on a platform below it. A second, hooked needle under the platform made a loop in the thread, which was caught when the first needle descended again.
    In 1841, Thimmonier was appointed to a senior position in a large Paris clothing factory engaged in the production of French army uniforms. He soon had eighty machines in use, but a mob of hand-sewers broke in, smashed the machines and nearly killed Thimmonier. In 1845, he had developed his machine so that it could make 200 stitches per minute and formed a partnership with Jean-Marie Magnin to build them commercially. However, the abdication of Louis Philippe on 21 February 1848 ended his hopes, even though patents were taken out in the UK and the USA in that year. The English patent was in Magnin's name, and Thimmonier died impoverished in 1857. His machine was perfected by many later inventors.
    [br]
    Bibliography
    1830, with Ferrand, (chain-stitch machine).
    Further Reading
    A.Matagran, 1931, "Barthélémy Thimmonier (1793–1857), inventeur de la machine à coudre", Bull. Soc. Enc. Industr. nat. 130 (biography in French).
    J.Meyssin, 1914, Histoire de la machine à coudre: portrait et biographie de l'inventeur B.Thimmonier, 5th edn, Lyons (biography in French).
    M.Daumas, (ed.), 1968, Histoire générale des techniques, Vol. III: L'Expansion du machinisme, Paris (includes a description of Thimmonier's machine, with a picture).
    N.Salmon, 1863, History of the Sewing Machine from the Year 1750 (tells the history of the sewing machine).
    F.B.Jewell, 1975, Veteran Sewing Machines. A Collector's Guide, Newton Abbot (a more modern account).
    RLH

    Biographical history of technology > Thimmonier, Barthélémy

  • 6 Cartwright, Revd Edmund

    [br]
    b. 24 April 1743 Marnham, Nottingham, England
    d. 30 October 1823 Hastings, Sussex, England
    [br]
    English inventor of the power loom, a combing machine and machines for making ropes, bread and bricks as well as agricultural improvements.
    [br]
    Edmund Cartwright, the fourth son of William Cartwright, was educated at Wakefield Grammar School, and went to University College, Oxford, at the age of 14. By special act of convocation in 1764, he was elected Fellow of Magdalen College. He married Alice Whitaker in 1772 and soon after was given the ecclesiastical living of Brampton in Derbyshire. In 1779 he was presented with the living of Goadby, Marwood, Leicestershire, where he wrote poems, reviewed new works, and began agricultural experiments. A visit to Matlock in the summer of 1784 introduced him to the inventions of Richard Arkwright and he asked why weaving could not be mechanized in a similar manner to spinning. This began a remarkable career of inventions.
    Cartwright returned home and built a loom which required two strong men to operate it. This was the first attempt in England to develop a power loom. It had a vertical warp, the reed fell with the weight of at least half a hundredweight and, to quote Gartwright's own words, "the springs which threw the shuttle were strong enough to throw a Congreive [sic] rocket" (Strickland 19.71:8—for background to the "rocket" comparison, see Congreve, Sir William). Nevertheless, it had the same three basics of weaving that still remain today in modern power looms: shedding or dividing the warp; picking or projecting the shuttle with the weft; and beating that pick of weft into place with a reed. This loom he proudly patented in 1785, and then he went to look at hand looms and was surprised to see how simply they operated. Further improvements to his own loom, covered by two more patents in 1786 and 1787, produced a machine with the more conventional horizontal layout that showed promise; however, the Manchester merchants whom he visited were not interested. He patented more improvements in 1788 as a result of the experience gained in 1786 through establishing a factory at Doncaster with power looms worked by a bull that were the ancestors of modern ones. Twenty-four looms driven by steam-power were installed in Manchester in 1791, but the mill was burned down and no one repeated the experiment. The Doncaster mill was sold in 1793, Cartwright having lost £30,000, However, in 1809 Parliament voted him £10,000 because his looms were then coming into general use.
    In 1789 he began working on a wool-combing machine which he patented in 1790, with further improvements in 1792. This seems to have been the earliest instance of mechanized combing. It used a circular revolving comb from which the long fibres or "top" were. carried off into a can, and a smaller cylinder-comb for teasing out short fibres or "noils", which were taken off by hand. Its output equalled that of twenty hand combers, but it was only relatively successful. It was employed in various Leicestershire and Yorkshire mills, but infringements were frequent and costly to resist. The patent was prolonged for fourteen years after 1801, but even then Cartwright did not make any profit. His 1792 patent also included a machine to make ropes with the outstanding and basic invention of the "cordelier" which he communicated to his friends, including Robert Fulton, but again it brought little financial benefit. As a result of these problems and the lack of remuneration for his inventions, Cartwright moved to London in 1796 and for a time lived in a house built with geometrical bricks of his own design.
    Other inventions followed fast, including a tread-wheel for cranes, metallic packing for pistons in steam-engines, and bread-making and brick-making machines, to mention but a few. He had already returned to agricultural improvements and he put forward suggestions in 1793 for a reaping machine. In 1801 he received a prize from the Board of Agriculture for an essay on husbandry, which was followed in 1803 by a silver medal for the invention of a three-furrow plough and in 1805 by a gold medal for his essay on manures. From 1801 to 1807 he ran an experimental farm on the Duke of Bedford's estates at Woburn.
    From 1786 until his death he was a prebendary of Lincoln. In about 1810 he bought a small farm at Hollanden near Sevenoaks, Kent, where he continued his inventions, both agricultural and general. Inventing to the last, he died at Hastings and was buried in Battle church.
    [br]
    Principal Honours and Distinctions
    Board of Agriculture Prize 1801 (for an essay on agriculture). Society of Arts, Silver Medal 1803 (for his three-furrow plough); Gold Medal 1805 (for an essay on agricultural improvements).
    Bibliography
    1785. British patent no. 1,270 (power loom).
    1786. British patent no. 1,565 (improved power loom). 1787. British patent no. 1,616 (improved power loom).
    1788. British patent no. 1,676 (improved power loom). 1790, British patent no. 1,747 (wool-combing machine).
    1790, British patent no. 1,787 (wool-combing machine).
    1792, British patent no. 1,876 (improved wool-combing machine and rope-making machine with cordelier).
    Further Reading
    M.Strickland, 1843, A Memoir of the Life, Writings and Mechanical Inventions of Edmund Cartwright, D.D., F.R.S., London (remains the fullest biography of Cartwright).
    Dictionary of National Biography (a good summary of Cartwright's life). For discussions of Cartwright's weaving inventions, see: A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the Industrial Revolution, Manchester. F.Nasmith, 1925–6, "Fathers of machine cotton manufacture", Transactions of the
    Newcomen Society 6.
    H.W.Dickinson, 1942–3, "A condensed history of rope-making", Transactions of the Newcomen Society 23.
    W.English, 1969, The Textile Industry, London (covers both his power loom and his wool -combing machine).
    RLH

    Biographical history of technology > Cartwright, Revd Edmund

  • 7 Anschütz, Ottomar

    [br]
    b. 1846 Lissa, Prussia (now Leszno, Poland) d. 1907
    [br]
    German photographer, chronophotographer ana inventor.
    [br]
    The son of a commercial photographer, Anschütz entered the business in 1868 and developed an interest in the process of instantaneous photography. The process was very difficult with the contemporary wet-plate process, but with the introduction of the much faster dry plates in the late 1870s he was able to make progress. Anschütz designed a focal plane shutter capable of operating at speeds up to 1/1000 of a second in 1883, and patented his design in 1888. it involved a vertically moving fabric roller-blind that worked at a fixed tension but had a slit the width of which could be adjusted to alter the exposure time. This design was adopted by C.P.Goerz, who from 1890 manufactures a number of cameras that incorporated it.
    Anschütz's action pictures of flying birds and animals attracted the attention of the Prussian authorities, and in 1886 the Chamber of Deputies authorized financial support for him to continue his work, which had started at the Hanover Military Institute in October 1885. Inspired by the work of Eadweard Muybridge in America, Anschütz had set up rows of cameras whose focal-plane shutters were released in sequence by electromagnets, taking twenty-four pictures in about three-quarters of a second. He made a large number of studies of the actions of people, animals and birds, and at the Krupp artillery range at Meppen, near Essen, he recorded shells in flight. His pictures were reproduced, and favourably commented upon, in scientific and photographic journals.
    To bring the pictures to the public, in 1887 he created the Electro-Tachyscope. The sequence negatives were printed as 90 x 120 mm transparencies and fixed around the circumference of a large steel disc. This was rotated in front of a spirally wound Geissler tube, which produced a momentary brilliant flash of light when a high voltage from an induction coil was applied to it, triggered by contacts on the steel disc. The flash duration, about 1/1000 of a second, was so short that it "froze" each picture as it passed the tube. The pictures succeeded each other at intervals of about 1/30 of a second, and the observer saw an apparently continuously lit moving picture. The Electro-Tachyscope was shown publicly in Berlin at the Kulturministerium from 19 to 21 March 1887; subsequently Siemens \& Halske manufactured 100 machines, which were shown throughout Europe and America in the early 1890s. From 1891 his pictures were available for the home in the form of the Tachyscope viewer, which used the principle of the zoetrope: sequence photographs were printed on long strips of thin card, perforated with narrow slots between the pictures. Placed around the circumference of a shallow cylinder and rotated, the pictures could be seen in life-like movement when viewed through the slots.
    In November 1894 Anschütz displayed a projector using two picture discs with twelve images each, which through a form of Maltese cross movement were rotated intermittently and alternately while a rotating shutter allowed each picture to blend with the next so that no flicker occurred. The first public shows, given in Berlin, were on a screen 6×8 m (20×26 ft) in size. From 22 February 1895 they were shown regularly to audiences of 300 in a building on the Leipzigstrasse; they were the first projected motion pictures seen in Germany.
    [br]
    Further Reading
    J.Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris. B.Coe, 1992, Muybridge and the Chronophotographers, London.
    BC

    Biographical history of technology > Anschütz, Ottomar

  • 8 Crompton, Samuel

    SUBJECT AREA: Textiles
    [br]
    b. 3 December 1753 Firwood, near Bolton, Lancashire, England
    d. 26 June 1827 Bolton, Lancashire, England
    [br]
    English inventor of the spinning mule.
    [br]
    Samuel Crompton was the son of a tenant farmer, George, who became the caretaker of the old house Hall-i-th-Wood, near Bolton, where he died in 1759. As a boy, Samuel helped his widowed mother in various tasks at home, including weaving. He liked music and made his own violin, with which he later was to earn some money to pay for tools for building his spinning mule. He was set to work at spinning and so in 1769 became familiar with the spinning jenny designed by James Hargreaves; he soon noticed the poor quality of the yarn produced and its tendency to break. Crompton became so exasperated with the jenny that in 1772 he decided to improve it. After seven years' work, in 1779 he produced his famous spinning "mule". He built the first one entirely by himself, principally from wood. He adapted rollers similar to those already patented by Arkwright for drawing out the cotton rovings, but it seems that he did not know of Arkwright's invention. The rollers were placed at the back of the mule and paid out the fibres to the spindles, which were mounted on a moving carriage that was drawn away from the rollers as the yarn was paid out. The spindles were rotated to put in twist. At the end of the draw, or shortly before, the rollers were stopped but the spindles continued to rotate. This not only twisted the yarn further, but slightly stretched it and so helped to even out any irregularities; it was this feature that gave the mule yarn extra quality. Then, after the spindles had been turned backwards to unwind the yarn from their tips, they were rotated in the spinning direction again and the yarn was wound on as the carriage was pushed up to the rollers.
    The mule was a very versatile machine, making it possible to spin almost every type of yarn. In fact, Samuel Crompton was soon producing yarn of a much finer quality than had ever been spun in Bolton, and people attempted to break into Hall-i-th-Wood to see how he produced it. Crompton did not patent his invention, perhaps because it consisted basically of the essential features of the earlier machines of Hargreaves and Arkwright, or perhaps through lack of funds. Under promise of a generous subscription, he disclosed his invention to the spinning industry, but was shabbily treated because most of the promised money was never paid. Crompton's first mule had forty-eight spindles, but it did not long remain in its original form for many people started to make improvements to it. The mule soon became more popular than Arkwright's waterframe because it could spin such fine yarn, which enabled weavers to produce the best muslin cloth, rivalling that woven in India and leading to an enormous expansion in the British cotton-textile industry. Crompton eventually saved enough capital to set up as a manufacturer himself and around 1784 he experimented with an improved carding engine, although he was not successful. In 1800, local manufacturers raised a sum of £500 for him, and eventually in 1812 he received a government grant of £5,000, but this was trifling in relation to the immense financial benefits his invention had conferred on the industry, to say nothing of his expenses. When Crompton was seeking evidence in 1811 to support his claim for financial assistance, he found that there were 4,209,570 mule spindles compared with 155,880 jenny and 310,516 waterframe spindles. He later set up as a bleacher and again as a cotton manufacturer, but only the gift of a small annuity by his friends saved him from dying in total poverty.
    [br]
    Further Reading
    H.C.Cameron, 1951, Samuel Crompton, Inventor of the Spinning Mule, London (a rather discursive biography).
    Dobson \& Barlow Ltd, 1927, Samuel Crompton, the Inventor of the Spinning Mule, Bolton.
    G.J.French, 1859, The Life and Times of Samuel Crompton, Inventor of the Spinning Machine Called the Mule, London.
    The invention of the mule is fully described in H. Gatling, 1970, The Spinning Mule, Newton Abbot; W.English, 1969, The Textile Industry, London; R.L.Hills, 1970, Power in the Industrial Revolution, Manchester.
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (provides a brief account).
    RLH

    Biographical history of technology > Crompton, Samuel

  • 9 Parkhurst, Edward G.

    [br]
    b. 29 August 1830 Thompson, Connecticut, USA
    d. 31 July 1901 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and inventor.
    [br]
    Little is known of the early training of Edward G. Parkhurst, but at the time of Civil War (1861–5) he was employed by the Savage Arms Company of Middletown, Connecticut. In 1869 he joined the Pratt \& Whitney Company of Hartford, Connecticut, as Assistant Superintendent and later took charge of their gun department. He was the inventor of many improvements in machine tools and armaments. Among these was an automatic rod feeder for turret lathes, in which movement of a single lever enabled bar stock to be fed through the lathe spindle and gripped by a collet chuck while the machine was in motion. This was patented in August 1871 and was followed by other patents, particularly for improvements in machine guns and their accessories. Parkhurst retired from Pratt \& Whitney c. 1895 but was afterwards associated with the American Ordnance Company and the Bethlehem Steel Company. He was a founder member of the American Society of Mechanical Engineers in 1880 and served his home city of Hartford as Councillor and Alderman. In 1900 he contributed to the journal American Machinist some articles of reminiscences dealing with the early history of the American machine-tool industry and, in particular, the earliest milling machines and the origin of the turret lathe.
    RTS

    Biographical history of technology > Parkhurst, Edward G.

  • 10 Stibitz, George R.

    [br]
    b. 20 April 1904 York, Pennsylvania, USA
    [br]
    American mathematician responsible for the conception of the Bell Laboratories "Complex " computer.
    [br]
    Stibitz spent his early years in Dayton, Ohio, and obtained his first degree at Denison University, Granville, Ohio, his MS from Union College, Schenectady, New York, in 1927 and his PhD in mathematical physics from Cornell University, Ithaca, New York, in 1930. After working for a time for General Electric, he joined Bell Laboratories to work on various communications problems. In 1937 he started to experiment at home with telephone relays as the basis of a calculator for addition, multiplication and division. Initially this was based on binary arithmetic, but later he used binary-coded decimal (BCD) and was able to cope with complex numbers. In November 1938 the ideas were officially taken up by Bell Laboratories and, with S.B.Williams as Project Manager, Stibitz built a complex-number computer known as "Complex", or Relay I, which became operational on 8 January 1940.
    With the outbreak of the Second World War, he was co-opted to the National Defence Research Council to work on anti-aircraft (AA) gun control, and this led to Bell Laboratories Relay II computer, which was completed in 1943 and which had 500 relays, bi-quinary code and selfchecking of errors. A further computer, Relay III, was used for ballistic simulation of actual AA shell explosions and was followed by more machines before and after Stibitz left Bell after the end of the war. Stibitz then became a computer consultant, involved in particular with the development of the UNIVAC computer by John Mauchly and J.Presper Eckert.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Emanuel R.Priore Award 1977.
    Bibliography
    1957, with J.A.Larrivee, Mathematics and Computers, New York: McGraw-Hill. 1967, "The Relay computer at the Bell Laboratories", Datamation 35.
    Further Reading
    E.Loveday, 1977, "George Stibitz and the Bell Labs Relay computer", Datamation 80. M.R.Williams, 1985, A History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Stibitz, George R.

См. также в других словарях:

  • Home hemodialysis — (HHD), is the provision of hemodialysis in the home of people with stage 5 chronic kidney disease. In the US home hemodialysis was the most common method of renal replacement therapy in the early 1970s before the introduction of the Federal ESRD… …   Wikipedia

  • Home roasting coffee — Home roasting is the process of roasting green coffee beans on a small scale for personal consumption. Personal roasting of coffee has been practiced for centuries, and has utilized numerous method of roasting the beans such as heating over fire… …   Wikipedia

  • Home automation — is the residential extension of building automation . It is automation of the home, housework or household activity. Home automation may include centralized control of lighting, HVAC (heating, ventilation and air conditioning), appliances, and… …   Wikipedia

  • Home appliance — Numerous appliances are found in the kitchen. Industry Food Beverages, Health Care Fuel Source Typically electric Powered Yes …   Wikipedia

  • Home network — Home networking standards Common name IEEE standard HomePlug IEEE 1901 Wi Fi 802.11a 802.11b 802.11g 802.11n Common name ITU T recommendation HomePNA 2.0 G.9951–3 …   Wikipedia

  • Home Motel Abbotsford — (Abbotsford,США) Категория отеля: 1 звездочный отель Адрес: 412 North 4th Stre …   Каталог отелей

  • Home computer — A home computer was a class of personal computer entering the market in 1977 and becoming common during the 1980s. [ [http://www.homecomputer.de/ Home of the home computer] website] They were marketed to consumers as accessible personal computers …   Wikipedia

  • Home Improvement (TV series) — Infobox television show name = Home Improvement caption = The Home Improvement cast format = Sitcom runtime = 30 minutes creators = Matt Williams Carmen Finestra David MacFadzean starring = Final Cast Tim Allen Patricia Richardson Earl Hindman… …   Wikipedia

  • Home cinema — Cinéma à domicile avec un grand écran. Le home cinema, cinéma à domicile, cinédom ou cinéma maison (au Canada), est une petite salle de cinéma installée chez un particulier, réalisée pour obtenir les meilleurs résultats possibles d acoustique et… …   Wikipédia en Français

  • Home of Economy — Infobox Company company name = Home of Economy company company type = Family Owned foundation = 1939 by M.W. Bob Kiesau and Jean Kiesau location = Grand Forks, North Dakota, USA industry = Retail products = Clothing, footwear, housewares, lawn… …   Wikipedia

  • Home-Computer — Kinder spielen das Videospiel Paperboy an einem Amstrad CPC 464 Heimcomputer in den 80er Jahren Heimcomputer war eine in den 1980er Jahren gebräuchliche Bezeichnung für Computer, die vor allem privat genutzt wurden. Obwohl Heimcomputer als… …   Deutsch Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»